Spectral and Polar Decomposition in AW*-Algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral and Polar Decomposition in AW*-Algebras

The spectral decomposition of normal linear (bounded) operators and the polar decomposition of arbitrary linear (bounded) operators on Hilbert spaces have been interesting and technically useful results in operator theory [3, 9, 13, 20]. The development of the concept of von Neumann algebras on Hilbert spaces has shown that both these decompositions are always possible inside of the appropriate...

متن کامل

Active Lattices Determine Aw*-algebras

We prove that AW*-algebras are determined by their projections, their symmetries, and the action of the latter on the former. We introduce active lattices, which are formed from these three ingredients. More generally, we prove that the category of AW*-algebras is equivalent to a full subcategory of active lattices. Crucial ingredients are an equivalence between the category of piecewise AW*-al...

متن کامل

Diagonalizing Matrices over Aw*-algebras

Every commuting set of normal matrices with entries in an AW*algebra can be simultaneously diagonalized. To establish this, a dimension theory for properly infinite projections in AW*-algebras is developed. As a consequence, passing to matrix rings is a functor on the category of AW*-

متن کامل

Categorical Aspects of von Neumann Algebras and AW ∗ - algebras Sander

We take a look at categorical aspects of von Neumann algebras, constructing products, coproducts, and more general limits, and colimits. We shall see that exponentials and coexponentials do not exist, but there is an adjoint to the spatial tensor product, which takes the role of coexponent. We then introduce the class of AW*-algebras and try to see to what extend these categorical constructions...

متن کامل

A Spectral Decomposition Theorem for Certain Harmonic Algebras

Introduction. Let K be a simple ring with identity and let A be a harmonic ^-algebra with identity, where neither K nor A is assumed to be commutative. If one denotes the set of maximal ideals in A by Max(^4), then A is strongly semisimple iff S(A) = C\MGMBX(A) M = (0). We assume that A is strongly semisimple and note that this implies that A is Jacobson semisimple. One may equip Max(.4) with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Analysis und ihre Anwendungen

سال: 1992

ISSN: 0232-2064

DOI: 10.4171/zaa/603